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The aim of this paper is to compare the two more standard geometrical 
formulations of gauge systems: the so-called presymplectic formulation and the 
formulation by group actions. We summarize the main features involved in them 
and prove that, at least locally, every presymplectic formulation can be inter- 
preted in terms of group actions. The converse is also proved. 

1. I N T R O D U C T I O N  

Essentially, constrained systems appear  in physics under two kinds of  
circumstances: (1) when the equations of  motion are incompatible and/or 
undetermined, and (2) when the system has some kind of  symmetry. There 
are two different descriptions within the framework of  modern mathemati-  
cal physics. One consists in using techniques ofpresymplec t i c  geometry,  and 
is used mainly in order to describe finite-dimensional dynamical systems. 
The other one uses the theory of  group actions and is applied especially 
when infinite-dimensional systems are considered, although it is very inter- 
esting in many cases. 

Next we describe briefly the main characteristics of  both descriptions 
and discuss their possible equivalence. 

3. P R E S Y M P L E C T I C  F O R M U L A T I O N  

The presymplectic formulation of  constrained systems is a geometriza- 
tion of  the initial development of  Dirac and Bergmann on singular systems 
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(Dirac, 1964). A deep explanation of the Hamiltonian and Lagrangian 
formalism can be found in Gotay et al. (1978), Gotay and Nester (1979, 
1980), Carifiena et al. (1985), Bergvelt and de Kerf  (1986), Mufioz-Lecanda 
and Roman-Roy (1991), and references quoted therein. 

In this formulation the initial data of the problem are a smooth 
differentiable manifold Mo which constitutes the initial phase space of the 
system, a presymplectic form co o ~f~2(Mo), and a (closed) canonical Hamil- 
tonian 1-form ~o ~f~l(Mo) or a canonical Hamiltonian function ho ~C~(Mo) 
(i.e., such that ~o = dho, at least locally). The equations of  motion are 
written as 

i(Xo)O% - dho = O, Xo ~Sf(Mo) 

where i(Xo)oJ o means the inner product of the vector field Xo and the form 
o~ o. Thus, the constrained system is specified by the triad (Mo, OJo, ho) 
which is called a presymplectic dynamical system. 

These equations are in general incompatible except perhaps in a set of 
points of Mo, which, in the cases of interest, make a closed regular 
submanifold Jc: C ~ Mo for which a vector field Xo tangent to C exists 
[and we denote this fact as Xo ~ ( C )  hereafter], such that the equation 

[i(Xo)cOo - dho]lc = 0 (2.1) 

holds. C is the final constraint submanifold which inherits a presymplectic 
structure ~Oc =j*OJo. Locally, this submanifold is defined by the vanishing 
of a set of functions {(} c C~(Mo) called constraints. 

The initial phase space Mo can be a submanifold Jo: Mo ~ de', where 
(Jg, f~) is a symplectic manifold. 2 Therefore the final constraint submani- 
fold can also be considered as a submanifold of (~/,  f~), j~ :  C ~ ~ '  and, 
for all p ~ C, if dim Tp C • = k and dim Tp C ~ Tp C • =/, we say C is of class 
(l, 2s = k - l )  (TpC • denotes the orthogonal symplectic complement of TpC 
in TpJ/) .  Then, l and 2s are the maximal number of first- and second-class 
constraints, respectively, appearing in a local description of C. (Notice that 
if ( is a first-class constraint, then its associated Hamiltonian vector field Xr 
is tangent to C; if ( is second class, then Xr is not tangent to C.) In 
particular, if s = 0, we call C a coisotropic submanifoM of  ~r On the other 
hand, the symplectic manifold (~r fl) can also be constructed directly from 
C, using the presymplectic structure Ogc, in such a manner that C is 
coisotropically imbedded on it (coisotropic imbedding theorem) (Gotay,  

2For instance, in the Hamiltonian formalism, many times ~' is the cotangent bundle T*Q of 
the configuration space Q of the system. 
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1982; Marie, 1983). In any case, every symplectic manifold (Jg, f~) contain- 
ing (C, ~oc) is called an ambient symplectic manifold or an extended phase 
space of (C, mc)- 

The solution of the system of equations (2.1) is not unique. The points 
of C reached from another fixed one p e C by means of integral curves of 
these solutions (passing through p) in the same lapse of the evolution 
parameter are the gauge equivalent points or states and the vector fields 
whose integral curves are made of gauge equivalent points are the gauge 
fields, which we denote ft. Under certain regularity conditions, it is proved 
that ff = ker O9c, where ker coc denotes the set of vector fields of ~r(M0) 
whose restrictions to C make up ker COc (that is, Jc. ker mc = ker coc [c)? In 
this case the dynamical problem posed by the equations (2.1) can be 
treated equivalently by studying the solution of the equation 

j*[i(X)~o -- dh] = 0 (2.2) 

with X~YC(M) tangent to C. [See Carifiena et al. (1985), Bergvelt and de 
Kerf (1986), Mufioz-Lecanda (1989), and Romfin-Roy (1988) for details.] 

It is assumed that gauge equivalent states represent the same physical 
state. The geometrical procedure in order to eliminate this physical redun- 
dancy is to mal~e the quotient of C by the foliation generated by the 
involutive distribution ker OJc [which is denoted ~ ( k e r  OJc)]. Under suit- 
able regularity conditions, the quotient space C is a differentiable manifold, 
the projection re: C ~ C is a submersion, and ~ is endowed with a symplec- 
tic structure 03 such that ~z'o3 = ~o c. (C, 03) is called the manifold of physical 
states, and equations (2.1) and (2.2) project in a natural way to C: 

iO~)03 -- d/7 = 0 (2.3) 

where z*kT=j*h0 and, for all Xo~Yf(C) which is a solution of (2.1), 
rc.Xo = .g is the unique solution of (2.3). Note that the existence of /~ is 
assured because i(kereJc)(j*ho)=0, as can be easily proved using the 
dynamical equation on C [equation (2.2)]. 

3. FORMULATION BY GROUP ACTIONS. TRANSLATION TO 
THE PRESYMPLECTIC FORMULATION 

This formulation is based on the theory of actions of groups on 
symplectic manifolds (with well-defined momentum map) (Abraham and 
Marsden, 1978; Souriau, 1969; Warner, 1971; Libermann and Marie, 1987). 
A more detailed exposition of this description can be found in Marsden 
and Weinstein (1974), Weinstein (1979), and Gotay et al. (1990). 

3ker ~o c is locally generated by vector fields which can be taken as Hamiltonian. In that case, 
their Hamiltonian functions are the first-class constraints. 
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The initial data of the formulation are now a smooth symplectic 
manifold (~' ,  f~) which constitutes the extended phase space of the system, 
a Lagrangian function, or directly a Hamiltonian function h ~ C~176 [or a 
Hamiltonian 1-form ~ ~Z1(M)], and a group G of symmetries of the system 
(d/,  f~, h) called the gauge group, whose action in (d//, f~) is strongly 
symplectic or Hamiltonian [hence, the Lie algebra g of G is realized in 
5f(J/)  by means of Hamiltonian vector fields ~g(J/r 

The next step is to construct a momentum map J: ~ / ~  g* associated 
to the action of G in J / ,  which is defined in the following way: for all 
m~J///, J(m)..=/z~g* such that 

J(m): X ~--~ fx (m)  

where f x  is one Hamiltonian function associated to the vector field of 
~rg(~/) which realizes ~/4 We assume that J is Ad-equivariant, that is, the 
action of G is a Poissonian action. Then, let # be a weakly regular value of 
the momentum map. The set J-~(/~) is the constraint submanifold, 
Jc: j - l ( # )  ~ jg .  In this way, the constrained system is entirely specified by 
(Jg, t ,  h, G, J). Such a quintuple is usually called a dynamical system with 
symmetry. 

Concerning the dynamics, if Xh ~X(J//) is the Hamiltonian vector field 
associated to h, that is, a solution of the equation i ( X ) ~  - dh = 0, then its 
trajectories with initial condition in J-~(/~) are contained in this submani- 
fold, since h is invariant by G, and thus Xh~YC(J-~(IJ)). Hence, the 
component functions of J are invariant by Xh. 

If we want to make a local description of j - l (# ) ,  we have that the 
constraints defining it locally are the component functions of J = # (ctn). 
In fact, observe that, if {Xi } is a base of g, {~i } are the Hamiltonian 
functions associated to these vector fields by the comomentum map, and 
{a~} is the dual base in g*, then if/~ = #~ai with #i fixed constants, we have 
that 

J - ' ( p )  ..= {m ~lJ(m) = #} 

= {m E./[g [J(m)(X) = #(X), vX~g} 

= {m E #At IJ(m)(Xi) = pt } 

= {m~d/[l~i(m) = #i} 

and the constraints are i f ; -  #i. 

4The map J*: X ~-*fx is called the comomentum map. 
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At this point, one can observe that, taking Mo = J-~(#), the natural 
imbedding j0: Mo ~ sg, the form COo =J~'f~, and the function ho = j ' h ,  then 
(J-~(#), COo, h0) is a presymplectic system. This system is compatible since 
the equations 

i ( Xo )COo - dho = 0 (3.1) 

have the vector field Xo~X(Mo) such that jo.Xo=XhIMo as a solution 
[remember that Xh is tangent to j-l(#)].  Hence, Mo is, in this case, the final 
constraint submanifold C of this presymplectic system. 

In this formulation, gauge redundancy can be discussed in the follow- 
ing terms: if h is a Hamiltonian function invariant by G, so is h'.'= h + ~, 
for all constraints ( defining locally Mo = J-1(#), and both restricted to ho 
in M0. This means that Xh and Xh. are valid solutions for the dynamics and, 
as one can observe, the corresponding vector fields Xo and X~ in 5f(M0), 
which are solutions of (3.1), differ in an element of ker COo. 

Now, let Gu be the isotropy group of J-~(#). By equivariance, J-1(#) 
is stable under the action of Gu. Therefore the quotient J-I(#)/G~ is 
well defined and is called the orbit space of J-1(#). Then, if the action 
of G u in j-l(#) is proper and free, the orbit space is a differentiable 
manifold which is endowed with a (unique) symplectic structure 03 (Mars- 
den-Weinstein theorem). This is the manifold of physical states in this 
formulation. It is clear that h projects onto J-~(#)/G~, since h is invariant 
under the action of G, and the same thing holds for the dynamical 
equation. 

Observe that the set of vector fields of g which are tangent to G~ (i.e., 
the Lie algebra of G~), which we denote g~ c g, is realized in 3f(J[) by 
means of vector fields which are the gauge vector fields (~ of the first 
formulation and, hence, the manifold of physical states are the same in 
both formulations. In fact, since G, is the isotropy group and letting J -  1(/~) 
be invariant, g, is realized by Hamiltonian vector fields which are tangent 
to J-1(/~) (denote this set by (~). Therefore, their Hamiltonian functions are 
first-class constraints necessarily and, hence f# _ ker COo But since the final 
constraint submanifolds C and J-~(#) are identified and the quotient 
spaces C/o~(ker coc) and J-I(#)/Gu have to be symplectic manifoldS, this 
implies that (~ = ker coc (i.e., (r is the set of gauge vector fields) and the 
quotients are equal. 

Summarizing, we have proved the following result: 

Theorem 1. Every system with symmetry (J/ ,  f~, h, G, J) can be de- 
scribed as a presymplectic dynamical system (Mo, COo, h) , where the final 
constraint submanifold is j - l ( # ) = M  ~ and the Lie algebra g, of the 
isotropy group of j - l (# )  is realized by the gauge group f~ = ker COo. 
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4. THE P R E S Y M P L E C T I C  F O R M U L A T I O N  AS A G R O U P  
ACTION F O R M U L A T I O N  

In the last section, we concluded that the description of a dynamical 
system with symmetry can be interpreted as a presymplectic dynamical 
system where the isotropy group of J-~(#)  is identified with the gauge 
group. Now, we pose the converse question; it is possible to interpret any 
presymplectic system as a system with symmetry? In other words, can we 
formulate the presymplectic formulation of  a constrained system in terms 
of group actions? The answer is affirmative, at least locally, and the result 
we obtain is the following: 

Theorem 2. Let (Mo, ~o0, h0) be a presymplectic dynamical system with 
final constraint submanifold C, and let (J//, f~) be an ambient symplectic 
manifold such that j:  C ~ JP/ is a submanifold of class (l, 2s) in ~ ' .  Let 
X e ~ ( J / )  be a vector field tangent to C, solution of  equation (2.2). 

If p e C, then there exists an open set U in J / / such  that p e U, and an 
Abelian Lie group G such that: 

1. G acts freely on the points of  U. 
2. The action of  G is strongly symplectic and there exists a momentum 

map J associated to it. 
3. C n U = J - I ( O ) .  
4. The Lie algebra go of the isotropy group Go of C is realized in the 

gauge group ker a~ c. 

Proof. Let dim J / / =  2n and p e C. According to Shanmugadhasan 
(1973), there exists an open set U of  p in ~r and a local system of  
coordinates ~p = {qi, p;, r/j, Cj, Xk, X~ } (with k = 1 . . . . .  s; j = 1 . . . . .  /; 
i = l  . . . .  , n - s - l ) ,  such that 

1. ~p(U) = R 2n, ~p(p) = 0. 

2. f~lv = dq' ^ dpe + ar/J ̂  a~j + aZk ^ dz'k. 
3. c n  u = = 0, z (x) = 0, z ; ( x )  = 0}. 

Then j *~ l c~v=dqSAdp i ,  and [ker(j*O)]lc~ v is spanned by {0/0r/J}. 
Observe that the functions 4; are first-class constraints and Zk, Z~, are 
second-class constraints. 

Let ~ be the distribution in U spanned by {0/~3r/J, ~/8)~ k, 8/OZ'k }.5 
is an involutive distribution and the Lie brackets of  elements of  this local 
base are zero. The submanifolds defined by 

{x e Ulq~(x) = ctn, Pi (x) = ctn, ~j. (x) = ctn} 

5Observe that these vector fields are a local base of 5f(C) ~, the set of vector fields taking 
values in TC • 
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are maximal integral manifolds of ~ .  All of  them are diffeomorphic and 
have the structure of  an Abelian Lie group defined in the following way: 
consider U0 = {x~ U[qi(x) = a ~, p~(x) = ai, ~j(x) = bj } (with a ~, a~, bieR). 
The map 

Uo--, R t+2  

x z*(x), 

is a diffeomorphism which translates the structure of the Lie group from 
W § 2~ to U 0. Then each one of these maximal integral manifolds of @ have 
a natural structure of  an Abelian Lie group. 

Consider G = W +2~ with the usual Lie group structure. Then, G acts 
freely in U in the natural way: if x E U and g e G, then gx  = q~ - ~(q~(x) + g). 

This action has the following properties: 
1. It is strongly symplectic because 

and the vector field O/~?]J, O/OZ k, ~/OZIk are Hamiltonian. 
2. It preserves the Hamiltonian function h on C n U. In fact, if 

x E C n U, then, for all j, 

x = 0  

because 8 / 8 q J ~ r ( C )  • and Xh is tangent to C. Now we have to prove it for 
8/8Z k and 8/SZ'k (for all k), but it holds since 

and the same thing for 8/8Z k. 
3. There exists a momentum map. In fact, a comomentum map J* can 

be defined as 

\ o r l j j  = zk ,  J*  

Then the momentum map is given by J :=(~ j ,Z '~ ,Z  k) and therefore 
C c ~ U = J - I ( O ) .  

4. The Lie algebra go of  the isotropy group Go of C is realized by the 
elements of  ~ whose integral curves are contained in C, which are {8/8~1J}, 
that is, ker(j*f~) = ker r c. [] 

Observe that if (M, ~o) is a symplectic manifold in which (C, o~c) is 
coisotropically imbedded, C ~ M ~ J/l, then locally the situation is the 
following: the group G' acting on M is Go, the isotropy group of  C. 
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5. COMMENTS AND DISCUSSION 

When we compare both formulations, some remarks can be pointed 
out: 

1. In the first case, the final constraint submanifold is not a datum of 
the problem, but it is obtained from the analysis of the compatibility of the 
equations of motion and the stability of their solutions. In the second one, 
the final constraint submanifold arises immediately as a level set of the 
momentum map and dynamics is not required in order to achieve it. 

2. In the second formulation, additional information is needed in 
relation to the first one: the gauge group G has to be known in the 
beginning, and, from it, the isotropy group G~ can be obtained. In the first 
formulation, G~ would be obtained once the constraint algorithm is 
finished and the final constraint submanifold is known: it would be the Lie 
group which has f# ~ g~ as Lie algebra. 

3. Notice that, in the particular case G, = G, we have g, = g and, 
according to the last comment, this means that all the constraints appear- 
ing in the theory are first class. If  G, ~ G, then it means that there are also 
second-class constraints. This last situation is physically undesirable, since 
these constraints represent physically irrelevant degrees of freedom, which 
can be obviated and must be suppressed in order to obtain a correct 
interpretation of the dynamics and a possible quantization of the system. 
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